List of questions for the diploma exam

	of study: Automatic Control and Robotics First-cycle studies
Prot	le: Automatic Control
No.	Question
1	How to interpret frequency response from input-output relations viewpoint? [Automatic Control]
2	Clarify how obtain frequency response by means of an experiment. [Automatic Control]
3	Analyze the need to introduce I term into a PID controller. [Automatic Control]
4	Average power of a sum (or a difference) of random signals. [Signals and dynamic systems]
5	Basic properties of variance and correlation estimators. [Signals and dynamic systems]
6	The Fourier Transform as an extension of the Fourier Series to non-periodic function. [Signals and dynamic systems]
7	List and characterize the manipulator kinematics tasks. [Robotics]
8	Specify possible ways to determine robot tool orientation. [Robotics]
9	Sketch the signal flow diagram in the robot dynamics model. [Robotics]
10	Define the real-time system. [Real Time Systems]
11	Specify the process components in the computer system. [Real Time Systems]
12	Point out 3 ways to pass arguments to functions in C++. [Introduction to Computer Science]
13	Explain how floating point variables are represented in memory. [Introduction to Computer Science]
14	Referring to containers of STL library: vector, map, and list, explain how each of them stores data in
- 7	memory. [Introduction to Computer Science]
15	What is the role of the IP address in network communication. [Introduction to Computer Science]
16	Structure, operation, models and characteristics of various types of semiconductor diodes and transistors. [Electronics]
17	Diagrams, characteristics and equations describing the operation of basic systems with an operating amplifier.
17	[Electronics]
18	Operation of basic types of DC impulse converters. [Electronics]
19	Diagrams, characteristics and control methods for voltage source inverters. [Electronics]
20	Mechanical characteristics of a DC commutator motor in case of changes in the armature voltage and excitation flux,
20	speed control capability. [Electrical machines in control engineering]
21	Classification and principle of operation of stepper motors. [Electrical machines in control engineering]
22	Principles of synthesis of combinational and sequential systems using elements of small and medium scale of
22	integration. [Microprocessor systems]
23	Measurement of time in microprocessor system. [Microprocessor systems]
24	The principle of synchronous and asynchronous serial communication. [Microprocessor systems]
25	Measurement of analog signal including calibration of the analogue path. [Microprocessor systems]
26	The effect of limiting the output signal of the speed controller in the DC drive cascade control system on the motor
20	starting and braking process. [Control of electromechanical systems]
27	Describe the scalar and vector control of the cage induction motor. [Control of electromechanical systems]
28	Describe how to operate the DC brushless motor (BLDCM). [Control of electromechanical systems]
29	Explain why the position of the motor shaft is measured in the permanent magnet synchronous motor (PMSM) speed
25	control system. [Control of electromechanical systems]
30	Numerical modelling of delays and first-order systems. [Analysis of control systems]
31	Control structures with Smith predictor and internal model (IMC). Analysis of control systems
32	Influence of delays in main and measurement paths on the control system. Analysis of control systems
33	Structure and application of the Kalman filter. Analysis of control systems
34	Types of production and concepts of their automatization [Flexible Manufacturing Systems]
35	Petri nets - definition of the position/transition network. [Flexible Manufacturing Systems]
36	How to create a Gantt diagram. [Flexible Manufacturing Systems]
37	Nonparametric identification methods. [System identification]
38	Differences between LS and IV method. [System identification]
39	Methods of order estimation. [System identification]
40	Describe the principle of operation of the relay and the difference between it and the contactor. [Devices of
70	automation and actuators]
41	What are the types of sensors used in automation devices? [Devices of automation and actuators]
42	Describe the principle of operation of a chosen pneumatic actuator. [Devices of automation and actuators]
43	Describe an encoder mode of action. [Devices of automation and actuators]
44	The operating points of the drive motor of the crane lifting mechanism. [Foundations of electrical drives]
45	Method of equivalent torque for motor power selection. [Foundations of electrical drives]
ر. ا	

Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering

46	Voltage control of the DC motor using an impulse converter. [Foundations of electrical drives]
----	--

46	Voltage control of the DC motor using an impulse converter. [Foundations of electrical drives]
47	Discrete implementation of the PID controller, block diagram and operating principle. [Digital controllers and PLC]
48	Principle of operation of basic functional blocks of programmable controllers, timers and counters. [Digital controllers and PLC]
49	Programmable logic controller operating cycle. [Digital controllers and PLC]
50	Principles of programming languages: LD, FBD and SFC. [Digital controllers and PLC]